The pandemic is now the biggest and most critical challenge of traditional banking. Some of these challenges are revenue pressure, data security, customer service management, data collection and analysis, risk management, and so on. These are the warning lights and alarm bells that call for caution over emerging risks. AI (Artificial Intelligence) has gained recognition as an effective solution.

AI is empowering the banking industry to provide individualized frictionless customer experiences. It is driving customer loyalty and profitability by automating banking processes.

In this article, we will discuss how AI can resolve banking challenges. We will also discuss some of the common challenges banks might encounter in implementing AI and how a tech partner can help deploy AI better.

How AI Can Resolve Banking Challenges?

AI is the new electricityAndrew Ng.

Modern technology such as AI can be tailored to the specific needs of the banking sector. The digital age is opening up new opportunities. According to a Business Insider research report, banks are expected to save an estimated $447 billion by 2023 with the help of AI applications. Given that, here is how AI can resolve some challenges.

Read more: Digital Transformation in Financial Services: All You Need to Know

digital transformation in financial services

1. AI-enabled conversational interfaces

Chatbots are one of the most popular cases of applying AI in banking. Bots are programmed to communicate with thousands of customers with minimum expense. Insider Intelligence estimates that the adoption of chatbots could save the banking sector $11 billion annually by 2023.

Mobile banking has become the most popular and chatbot services attract users’ attention and create a unique brand identity. AI functionality in mobile apps is helping banks generate more revenue than when customers visit their branches. Banking organizations that leverage AI improve their quality of services and remain competitive despite the crisis.

2. AI-enabled data collection and analysis 

Banks generate an enormous amount of data every day. Collecting and recording this data is an overwhelming task for employees. Besides, all this work may be a wasted effort if there is no proper plan to use this data. Hence banks need to determine the relationship between the collected data. That is another major challenge.

AI-based apps improve the user experience by collecting and analyzing data. The collected data then can be used to grant loans or fraud detection.

3. AI-enabled Risk management

Providing loans is a challenging task for bankers. Extension of credit to a fraudster can get the bank into difficulties. Or a borrowers’ economic downturn can adversely affect the bank. 2020 statistics show that credit card delinquencies in the US alone rose by 1.4% in a duration of six months.

AI-enabled systems can appraise a customer’s credit history more accurately. Additionally, AI-powered mobile banking apps track financial transactions and analyze user data to help banks anticipate the risks associated with the extension of credit.

4. AI-powered data security

Credit card fraud is on the rise. It is the most common type of personal data theft. AI-powered systems can analyze customer behavior, location, and financial habits. So, if it detects any unusual activity, it triggers a security mechanism immediately.

Read more: Artificial Intelligence and Machine Learning: The Cyber Security Heroes Of FinTech

FinTech

When all these challenges are successfully tackled, how does the AI-powered bank look like? Read on to find out.

How Does The AI-First Bank Look Like?

AI-bank rises to meet customers’ expectations and remain competitive. The AI-powered bank will offer intelligent and personalized propositions and experiences as it understands customers’ past behavior. It can span across multiple devices providing a consistent experience to its customers.

What Are The Common Challenges Banks Might Face In Implementing AI?

Implementing AI technology in banking is not always easy.  You need to ensure you have the right team and expertise. You will also need access to data, resources to invest in the project, and parties that are willing to adopt the new technology.

  • Access to data: It is one of the biggest challenges to implementing AI. Additionally, banks might face challenges with training data. It becomes hard to update or improve the AI models if the team does not have the necessary information to use and learn from.
  • Localization: Localization is critical to the banking sector as they often need to design models with multiple markets that they serve. Localization can help you properly customize the customer experience. Your data partner can support you with localization as they have skilled linguists to develop aspects such as style guides and voice persona.
  • Security and compliance: It is quite challenging to keep all the data confidential and secure. The right data partner can offer a variety of security options. They have security standards to ensure your customers’ data is securely handled.  Look for data partners who have strong data protection with certifications and regulations. They will be able to provide secure annotation. They will also provide onsite service options, private cloud deployment, on-premise deployment, and so on.
  • Trust, transparency, and explainability: AI models can only be successful if they can be understood and trusted by customers as they will want to be sure that their personal information is handled and stored securely. Talk to your partner and ask them to explain the model to you. Or you can always go back to the training data that was used to develop the model and extract some explainability.
  • Data pipelines: Connecting data pipeline components to use siloed data is not as easy as it seems. To do this effectively, banking institutions must ensure their data is collected and structured correctly. They must also ensure that this information enables ML models to predict according to the business goals. Look for a partner with extensive security offering as their expertise will enable your banking service company to be successful and scale.

Read more: The New Untapped Opportunities for FinTech Companies in the Coming Years

FinTech

How A Tech Partner Like Fingent Help Deploy AI Better?

Implementing AI into banking is a serious responsibility. It takes in-depth knowledge, an enormous amount of time, and dedication to accuracy. That is what Fingent has. We do not just follow the trends. Instead, we focus on how AI can add value to your particular banking needs.

Fingent can bring transparency and explainability of AI automated decision making to your banking processes. We can provide an easy-to-use interface through APIs delivered either on-premise, in the cloud, or as a SaaS offering.

By embedding AI and ML into our products, we can accelerate the release of explainable business models that will underpin new AI use cases. These can help create a seamless customer journey and automate manual processes with self-learning capabilities. We are confident that we can help you deploy AI better. Give us a call and let’s get talking.

Stay up to date on what's new

    About the Author

    ...
    Vinod Saratchandran

    Vinod has conceptualized and delivered niche mobility products that cater to various domains including logistics, media & non-profits. He leads, mentors & coaches a team of Project Coordinators & Analysts at Fingent.

    Talk To Our Experts

      Undoubtedly, data is what we see almost everywhere, and it is enormous. And it doesn’t stop there, it is growing continuously at a level beyond imagination! Let’s have a look at how it has changed over the years.

      A look into how Data and AI transformed in years!

      In the 1950s, when there were fewer technological developments, companies would collect the data(offline) and analyze it manually. This was also backed by limited data sources that made it time-consuming in obtaining the results.

      The mid-2000s paved the way for changing the world for the better and it was during this time the term “big data” was coined. Almost every business that had something to do with digital infrastructure started looking for ways to use the large data and come up with meaningful insights.

      This era also saw the invention of tools like Data mining, OLAP, etc., taking technological advancements to the next level. In general, the internet gained immense popularity not only for organizations but also for households. During this time, technology became more advanced and provided automated options for managing data, and data analysts could analyze data, trends, etc., and provide better recommendations.

      Google, Amazon, Paypal, and others also made a mark causing the volume of data to reach newer heights. However, all this posed a storage and processing problem.

      The late 2000s to early 2010s saw a surge in Facebook, Twitter, Smartphones, and connected devices. The companies used improved search algorithms, recommendations, and suggestions driven by the analytics rooted in the data to attract their customers. Enterprises also realized that would have to deal with unstructured data and so they got familiar with databases such as NoSQL. New Technologies were introduced for faster data processing and machine learning models were used for advanced analytics.

      Now, businesses are a step ahead and using automated tools using cloud and big data technologies. With cloud platforms, it is now easier to enable massive streaming and complex analytics.

      Read more: 5 ways in which big data can add value to your custom software development

      Having seen how data has evolved over the years, let’s have a look at how Artificial Intelligence has transformed in the last generation.

      In 1950, a British mathematician and WWII code-breaker- Alan Turing was one of the first people to come up with the idea of machines that could think. To date, the  Turing Test is used as a benchmark to determine a machine’s ability to think like a human. While this notion was ridiculed at the time, the term artificial intelligence gained popularity in the mid-1950s, after Turing’s death.

      Later, Marvin Minsky, an American cognitive scientist picked up the AI torch and co-founded the Massachusetts Institute of Technology’s AI laboratory in 1959. He was one of the leading thinkers in the AI field through the 1960s and 1970s. It was the rise of personal computers in the 1980s that sparked interest in machines that think.

      That said, it took several decades for people to recognize the true power of AI. Today, Investors and physicists like Elon Musk and Stephen Hawking are continuing the conversation about the potential for AI technology in combination with big data could have and how it could change human history.

      AI technology’s promising feature is its ability to continually learn from the data it collects. The more the data it collects and analyses through specially designed algorithms, the better the machine becomes at making predictions.

      Impact on business

      AI and big data have an impact on businesses like never before. Whether it is workflow management tools,  trend predictions, or even advertising, AI has changed the way we do business. Recently, a Japanese venture capital firm became the first company ever to nominate an AI board member for its ability to predict market trends faster than humans.

      On the other hand, data has been the primary driver for AI advancements. Machine learning technologies can collect and organize a large amount of data to make predictions and insights that otherwise cannot be achieved with manual processing. This not only increases organizational efficiency but reduces the chances of any critical mistake. AI can detect spam filtering or payment fraud and alert you in real-time about malicious activities.

      AI machines can be trained to handle incoming customer support calls thereby reducing costs. Additionally, you can use these machines to optimize the sales funnel by scanning the database and searching the Web for prospects that have similar buying patterns as your current customers.

      Read more: The Future of Artificial Intelligence – A Game Changer for Industries

      Artificial Intelligence

      5 trends in data and artificial intelligence that can help data leaders.

      1. Customer experience will be the key

      Supply chain and operating costs will mean nothing if you are unable to hold on to your customers. Today, businesses have to be more connected with their customers to be on top of the game. From in-person and digital sales to call centers, companies will have to collect data to have a holistic view of the customer. Businesses must consider other forms of interaction such as using voice analytics to understand how customers interact with call centers or chatbots.

      2. Leveraging External data

      External data can provide early warning signs about what’s going on. To make external data work, companies must start with a business problem and then think about the possible data that could be used to solve it. That said, companies might need to modernize data flows to leverage external data.

      While many businesses have started leveraging external data, some companies haven’t leveraged it yet as they are either too focused on internal data or finding it difficult to transfer data.

      A prime example of brands that used external data is Hershey’s Chocolates. It leveraged external data to predict an increase in the number of people using chocolate bars for Backyard S’mores and a decline in sales for smaller candy bars for trick-or-treating.

      3. CDOs leading the way towards a data-driven culture

      Introducing any new technology without training your employees to adapt and figure out new skills and processes will not be effective. According to Cindi Howson, chief data strategy officer at analytics platform provider ThoughtSpot, Chief Data Officers (CDOs) need to take the lead and empower their employees and the organization to gain time and efficiency with data.  Also, CDOs will have to make sure to upskill employees to take full advantage of new technology.

      4. Multi-Modal learning

      With advances in technology, AI can support multiple modalities such as text, vision, speech, and IoT sensor data. All this is helping developers find innovative ways to combine modalities to improve common tasks such as document understanding.

      For example, the data collected and processed by healthcare systems can include visual lab results, genetic sequencing reports, clinical trial forms, and other scanned documents. This presentation, if done right, can help doctors identify what they are looking at. AI algorithms that leverage multi-modal techniques (machine vision and optical character recognition) could augment the presentation of results and help improve medical diagnosis.

      5. AI-enabled employee experience

      Business leaders are starting to address concerns about the ability of AI to dehumanize jobs. This is driving interest in using AI to improve the employee experience.

      AI could be useful in departments such as sales and customer care teams that are struggling to hire people. Along with robotic process automation, AI could help automate mundane tasks to free up the sales team for having a better conversation with customers. Additionally, it could be used to enhance employee training.

      Read more: 9 Examples of Artificial Intelligence Transforming Business Today

      Artificial Intelligence

      Conclusion

      Leveraging data and Artificial intelligence has grown due to the pandemic and businesses are digitally connected than before the lockdown.

      At Fingent, we equip business leaders with insights, advice, and tools to achieve their business goals and build a future-proof organization. To learn more about how we fuel decision-makers to build successful organizations of tomorrow, contact us.

      Stay up to date on what's new

        About the Author

        ...
        Vinod Saratchandran

        Vinod has conceptualized and delivered niche mobility products that cater to various domains including logistics, media & non-profits. He leads, mentors & coaches a team of Project Coordinators & Analysts at Fingent.

        Talk To Our Experts

          The Role of Chatbots in Boosting Brand Loyalty and Experience

          As social messaging apps are gaining popularity, AI-powered chatbots are one of the best ways to reach out to a broader audience. Soon, several businesses across various verticals will implement AI chatbots that will help them carry out multiple tasks, including customer service and marketing activities.

          According to Gartner, by 2021, over 50% of companies will spend more on developing chatbots (intelligent conversational assistants) against traditional mobile app development.

          A chatbot is an AI-based program that communicates with humans through text messages or chats. It is a virtual assistant integrated into mobile applications, websites, or instant messengers and enables better engagement with your customers.

          Read more: 5 Leading NLP Platforms that Support Chatbot Development

          NLP Platforms

          Two common types of chatbot

          There are two types of chatbots a business can use: Transactional Chatbot and Conversational chatbot.

          • Transactional Chatbot is pre-designed to provide a customer with a fixed set of choices. The customer can select an appropriate option, and the chatbot will then assist them through the whole process by providing more choices till their problem is solved. A transactional chatbot is an excellent choice for banks, online food delivery, restaurants, or businesses that are able to understand and pre-define the solutions/ products that their customers generally seek.
          • Conversational Chatbot is designed to understand and respond to a conversation in a more human-like manner. It is equipped with artificial intelligence and has access to knowledge databases and other contextual information.

          A conversational chatbot is more suited for businesses with advanced SaaS tools and B2B companies providing enterprise solutions and online social platforms.

          Read more: How to Choose the Right Chatbot for Your Business

          Chatbots

          Five leading chatbot use cases in vogue today

          1. Healthcare chatbots

          Hospitals, clinics, and patient treatment centers leverage chatbots for booking appointments, sending medical information to refill prescriptions, answering common questions raised by patients or their attenders, checking physicians’ availability, and so on. According to Crunchbase, VCs have invested over 800 million dollars in at least 14 known start-ups like Safedrugbot, Sensely, Cancer Chatbot, and others to own a version of a chatbot with health features. The most significant advantage is that chatbots function silently 24/7 without disrupting anyone and answering questions at any time of the day. 

          Browsing through the website of a multispecialty hospital and sifting through the different specialties and doctors can be daunting. Chatbots reduce this strain and help patients book an appointment quickly based on their ailment or health condition. When a patient interacts with the chatbot, it will ask a series of questions to determine which doctor and department the patient should visit.  

          Example of a healthcare chatbot

          Healthily is an AI-driven chatbot that allows you to input your symptoms and get an appropriate diagnosis. Its machine learning model allows the app to give near accurate or even accurate diagnoses.

          Chatbots like Healthily prevent patients from waiting in long queues or relying on phone calls to consult doctors. With the ongoing pandemic, chatbots are making patients feel less anxious about seeking medical care. Chatbots help them get assistance in real-time.

          2. HR chatbots

          As the traditional office spaces give way to modern workspaces that are mobile, digital, or home, HR (PeopleOps) professionals face the increasing pressure to streamline communications and send instant responses to employees. Chatbots powered by AI free people from low value, tedious, repetitive, and transactional tasks to more high-value, strategic, engaging, and creative work. The inherent value extends to providing consistency and coherence to employee communication and reducing confusion for the end-user while delivering an instant response. HRs get more time to rethink the way they engage with employees and manage their entire cycle of work, including recruitment, onboarding, managing payroll and benefits, training and skills development, performance management, and so on.

          Example of an HR chatbot

          AskHR is an AI-powered HR chatbot that enables employees to get answers to the most frequently asked questions. AskHR bot natively supports 50+ languages and is hence a globally popular virtual assistant. It offers voice, email, and text support to employees and helps reduce costs, enhances employee engagement, and offers analytics to derive valuable insights. 

          Read more: Capitalizing on AI Chatbots Will Redefine Your Business: Here’s How

          AI Chatbot

          MUSA, Fingent’s AI virtual assistant

          Multi Utility Assistant or MUSA is an AI-powered virtual assistant (a chatbot) integrated with Fingent Hub – Fingent’s internal employee management system. MUSA enables employees to get answers to common queries related to HR and IT DevOps processes at Fingent.

          The virtual assistant helps our employees with questions related to their leaves, company policy, hardware or software issues, IT requests, and many more.   

          3. E-commerce chatbots

          E-commerce chatbots guide customers in their purchase decisions.

          Often, customers can get confused while browsing several products online. An E-commerce chatbot helps customers obtain detailed information about the product they are looking for or even helps them land on the right product page. Chatbots also help reduce cart abandonment as they can remind customers about the items left in their cart and prompt them to update their cart or purchase the items. Timely reminders and notifications will nudge the customers to revisit their carts and make a purchase decision, thereby helping businesses generate revenue quickly. 

          Example of an E-commerce chatbot

          While launching its AirMax Day shoes, Nike increased its average CTR by 12.5 times and the conversions four times with the help of StyleBot- Nike’s chatbot.  

          Chatbots play an essential role in providing more reliable and quicker customer support and keeping the customers up-to-date about the delivery status of their purchases.

          Read more: 5 Ways Chatbots Can Transform Your Real Estate Business

          4. Chatbots in banking and finance

          Chatbots are a great addition to any bank or finance institute that prioritizes customer service inclined towards digital interactions.

          Chatbots can help users check their account balance, transfer money to other accounts, view the history of transactions, or even locate the closest ATM. In addition, banks are currently using chatbots for marketing activities such as sending customized information about a customer’s savings, investments, etc., and notifying customers about their new products and services.

          Example of a BFSI chatbot

          In 2018, Bank of America introduced Erica, their AI Chatbot. It helps customers conduct simple actions such as paying bills, receiving credit report updates, view e-statements, and seek financial advice. Recently, Erica’s capabilities have been updated to enable clients to make smarter financial decisions by providing them with personalized insights. Thanks to its budgeting capabilities, Erica users grew to 12.2 million in Q1 2020 compared to 10.3 million in Q4 2019.

          5. Hospitality chatbots

          The hospitality industry is hugely dependent on customer service, goodwill, reviews, and references. As travelers use multiple channels (website, social media, mobile travel apps, travel aggregator portals, etc.) to look for information, travel and hospitality service providers face stiff competition in disseminating updated content across all media. They need to be available round-the-clock in answering customers or helping with bookings. Chatbots help customers make bookings, gain more information about hotel services, travel packages, and inquire about offers and deals. From check-in to several concierge services such as booking restaurants to activity reservations, chatbots can seamlessly assist customers.

          Example of a hospitality chatbot

          Quicktext is a popular AI-powered chatbot for hotels that automatically handles 85% of guests in 24 languages and delivers instant response to customer requests across six different channels. In addition, it serves as a messaging hub where hospitality businesses can centrally manage Live Chat, WhatsApp, Facebook Messenger, WeChat, SMS, and Booking.com communications.

          Read more: Hospitality Technology Trends: Revive The Lost Glory in 2021

          Hospitality Industry

          How can chatbots help your business?

          With the rise of emerging technologies such as artificial intelligence and wearable technology, chatbots provide industries with new avenues for businesses to engage with their customers.

          1. Leverage messaging platforms

          While social media engages audiences, messaging platforms enable businesses to have a one-on-one conversation with their customers. So, by integrating chatbots with your messaging platform, you could eliminate the need to build a new app and save time and money.

          2. Customer service

          Chatbots are a great way to augment customer service. The bots are available 24x7x365, which allows them to initiate the conversation proactively and prevent customers from waiting for long.

          3. Customer engagement

          Intelligent chatbots allow you to have more in-depth conversations at an individual level with your audiences, freeing them of any irrelevant information. So, a well-designed chatbot can extend the conversation and make the visitor come back for a discussion or a purchase. This can go a long way in establishing your brand loyalty.

          4. Cost optimization

          Getting a chatbot for your business is far cheaper and faster than developing a cross-function app or hiring additional employees. Chatbots do not need breaks, get tired, or make errors. Also, they can perform repetitive tasks without complaining.

          Read more: A Chatbot Story – How We Built a Comprehensive Onboarding Assistant for a Leading Research University

          chatbots

          Develop a custom chatbot for your business application

          Chatbots are being widely used across different business functions and are augmenting customer experience. With advances in technology, bots will only get more competent and open new avenues to streamline customer communications.

          We build bespoke and personalized chatbots leveraging AI and machine learning that enable your business to generate leads, increase revenue, and enhance user experience. If you are planning to develop a customized chatbot that can compete with the predefined bots in the market, contact us

          Stay up to date on what's new

            About the Author

            ...
            Vinod Saratchandran

            Vinod has conceptualized and delivered niche mobility products that cater to various domains including logistics, media & non-profits. He leads, mentors & coaches a team of Project Coordinators & Analysts at Fingent.

            Talk To Our Experts

              A Comparison of Top 5 NLP Platforms: Select Your Chatbot Development Platform Wisely

              The surge of artificial intelligence-based applications and conversational AI have heightened the use of NLP (Natural Language Processing). Each day, businesses collect an enormous amount of structured and unstructured data from their customers and users. Such information is collected through chatbots, intelligent assistants, and so on. Analyzing these data offers businesses insights into crucial operations and enhances their decision-making. However, manually inferring insights from tons of data is a challenging endeavor. This is where NLP platforms plays a vital role. This article will help you evaluate five different NLP platforms you can consider while developing a chatbot for your business support functions. 

              How Does NLP Platforms Help Businesses

              Gartner and IDC report that more than 80% of the enterprise data generated today is unstructured. Natural Language Processing (NLP) technology helps us derive meaning from the vast labyrinth of online data. NLP refers to applying several computational techniques that enable us to do analysis and synthesis of natural language and speech. According to a report by Intrado GlobeNewswire, the NLP market is expected to be work USD 42.04 billion by 2026.

              Chatbots are software applications that help us conduct conversations online via text or text-to-speech instead of directly communicating with a human agent.  

              Chatbots provide a better service experience to customers by responding to customer queries promptly, accurately, and most importantly, like humans. AI-powered chatbots can be trained to learn from data to respond in different and diverse scenarios. 

              However, picking the right chatbot platform can be a gigantic task. Here’s an analysis of five NLP platforms. Choose your chatbot development platform wisely. 

              Read more: Capitalizing on AI Chatbots Will Redefine Your Business: Here’s How

              AI Chatbot

              1. IBM Watson Assistant

              A pioneer in the chatbot market, IBM’s Watson Assistant has evolved into a holistic customer care product. As the pandemic weighed heavily on businesses, customers and employee services were challenged in unimaginable ways. IBM Watson Assistant is designed to solve customer and employee challenges, so its relevance became even more significant during this time. Using IBM Watson Assistant to create your chatbot helps in the following ways:

              First contact resolution

              Resolving questions quickly and successfully is one of the biggest priorities of Watson Assistant. One of the critical challenges of first contact is user engagement. If that is your concern, here is how Watson contact can help:

              • Allows integration with the phone, SMS, and WhatsApp: As it can integrate with phone and SMS, you can deploy speech services with natural sounding voices created with the help of advanced AI.
              • Best intent recognition accuracy: Watson Assistant helps you understand your customers’ questions without always requesting them to rephrase the question.

              Open ecosystem

              Watson Assistant is designed as an open ecosystem. It, therefore, allows you to connect with your existing tools, systems, and applications. Besides, it gives you the ability to orchestrate the end-to-end experience. 

              Scale your assistant to increase complex use cases

              Watson Assistant allows you to scale your virtual assistant beyond simplistic FAQ bots. It can be customized easily to fit the specific needs of your business. 

              Use cases: Companies such as Botanalytics, Ebix, and SnapEngage use Watson Assistant.

              Read more: A Chatbot Story – How We Built a Comprehensive Onboarding Assistant for a Leading Research University

              chatbots

              2. Amazon Lex

              Amazon Lex allows you to create and embed engaging chatbots into your applications, shielding you from the complexities of NLU (Natural Language Understanding) and speech recognition. Here are some of the top features of Amazon Lex. 

              Quicker integration

              The capabilities of Amazon Lex are simple and easy to use, allowing you to scale up from ground zero to a fully operational chatbot within a matter of minutes. Using a combination of aliases and versioning, you can roll out your conversational interfaces into multiple environments.

              Cost-effective solution

              Amazon Lex has no upfront costs. You can pay-as-you-go. 

              Fully managed service

              It provides all the necessary features to build, deploy, scale, and monitor your chatbot.

              Business use cases

              • Commerce chatbot: Allows you to order food
              • Support chatbot: Provides automated customer support
              • Enterprise chatbot: This allows you to connect to enterprise data resources
              • Use cases of Companies: Lumeneo.com, Paralect, and CommonBond use Amazon Lex.

              3. Rasa

              Rasa platform is an open-source framework. It is leading in ML toolkits that help developers create better chatbots with minimal training data. The two major components of the Rasa stack are Rasa NLU and Rasa Core. Rasa core helps create intelligent, conversational chatbots. 

              It is best for businesses that are looking to increase subscriber engagement and for those who are interested in marketing automation and personalization.

              The benefits of Rasa are:

              • You can deploy into your own server by keeping the components in-house
              • Highly customizable
              • Allows for multiple environments necessary for development, staging, and production
              • It helps you send individualized newsletters to each of your subscribers
              • It continues to self-learn when it interacts with people
              • It allows you to understand your customers better
              • It can be integrated with Facebook Messenger, Twilio, Telegram, and more

              4. SpaCy

              Spacy is an open-source NLP library that is designed for production usage. It helps you build real-world projects and handle large amounts of text data. It is a one-stop operation for most heavy-hitting functions for NLP. 

              It is best for companies that are bootstrapping a vast production or for vendors in charge of enterprise solutions. It has proven highly useful for companies that require industry-level solutions and need enhanced language support.

              Some of the benefits of SpaCy are:

              • It easily allows deep data mining
              • It does not weigh down the user with obscure formulas
              • It can analyze text quicker than its competitors
              • Enables businesses to implement strategies to interact with customers and leads
              • It is capable of working with over twenty languages
              • Allows you to handle NLP solutions across an international suite of languages. 
              • It is a powerhouse for every deep learning algorithm with the tools you need to teach your programs human language.

              5. Microsoft Azure

              Microsoft Azure bot service helps you develop, deploy and host a chatbot in an uncomplicated manner. It is a managed bot-building platform with an integrated environment. It is purpose-built for bot development. 

              Microsoft Azure bot services are best for enterprises and IT companies. 

              • It helps run FQAs speedily and consistently reducing customer management issues
              • Easy to integrate with various Azure services
              • You can build, connect, test, deploy and manage intelligent bots from one place
              • Easy to integrate with other chatbot software such as Jabber or Skype

              Read more: How to Choose the Right Chatbot for Your Business

              Chatbots

              Why choose Fingent as your chatbot development partner?

              Acquire estimates that nearly 1.4 billion people are willing to talk to chatbots. Did you know that chatbots can handle 80% of routine customer questions? These figures prove that the chatbot platform is the present and future of your business. 

              However, it is important to choose a chatbot development partner carefully. We at Fingent ensure your chatbot platform is easy-to-use even for non-tech employees. A customized and fine-tuned chatbot frees people up from low value, boring, repetitive, and transactional tasks. It enables your employees to focus on high-value, strategic, engaging, and creative work. The business value also lies in that the chatbot provides consistency and coherence to your communication, reduces/ eliminates confusion for the end-user while giving an instant response. It helps your employees get things done fast as they need not worry about the low value, boring, repetitive, and transactional tasks. Thanks to chatbot development! 

              Case Study
              Fingent assisted a leading university in creating an Automated Intelligence-driven ecosystem that includes AI-enabled chatbots and teaching assistants  Read Now!

              We will work with you through all the stages, from requirements identification, technology selection to planning and implementation. We will continue to support you in managing the chatbot after deployment. While you zero down on the chatbot platform, choosing the right partner to help you develop the chatbot according to your specific requirements is essential. Give us a call, and let us get talking.

              Stay up to date on what's new

                About the Author

                ...
                Vinod Saratchandran

                Vinod has conceptualized and delivered niche mobility products that cater to various domains including logistics, media & non-profits. He leads, mentors & coaches a team of Project Coordinators & Analysts at Fingent.

                Talk To Our Experts

                  How is AI Facilitating Healthcare Innovation Over Years

                  Today Artificial Intelligence (AI) is being used to enhance and improve all spheres of our lives. Artificial Intelligence in medicine is truly life-altering. The technology is used to solve complex healthcare challenges today. AI in medicine helps interpret the data obtained by diagnosing several chronic diseases such as diabetes, cardiovascular diseases, Alzheimer’s, and cancer. Automated systems, tools, and algorithms allow healthcare professionals to minimize errors and control disease progression. 

                  Artificial Intelligence in medicine has considerably advanced two fields: diagnosis and clinical decision-making. The implementation of AI in medicine enables physicians to minimize intra-observer variability and inter-observer variability. It facilitates the interpretation of diagnostic results with high accuracy and speed. 

                  A real-life example: Chest X-rays are among the most common imaging modalities read and interpreted by radiologists in hospitals today. Despite their widespread use, the modalities are difficult to interpret due to their low resolution. The AI models developed by IBM Research Center in California can read X-rays, and their performance is at par with the resident radiologists. 

                  This blog explains how Artificial Intelligence in medicine has been transforming healthcare in the past and present and how it can benefit us in the future.

                  Read more: Innovative Ways To Leverage Patient-Generated Health Data 

                  patient-generated health data

                  How AI has transformed healthcare in the past

                  In the past, Artificial Intelligence focused primarily on the development of computerized machines that were capable of making inferences or decisions that only humans can make. In 1966, Shakey- “the first electronic person” was developed. It was a mobile robot capable of interpreting instructions. Unfortunately, reduced funding and lack of interest pushed Artificial Intelligence in the medical industry into a phase popularly referred to as “AI winter.” Thankfully, that was not the end. 

                  How is AI transforming the present

                  Artificial Intelligence in medicine has crossed numerous milestones after the bleak “AI winter.” The present generation has witnessed a paradigm shift across patient treatment, clinical diagnosis, and decision-making. Armed with large amounts of data, doctors are now more capable of providing effective treatment to their patients. AI has revamped analytic methods and changed clinical decision-making techniques. 

                  Read more: 7 Major Impacts of Technology in Healthcare

                  healthcare

                  Increased data volumes enable decision-makers to gain unparalleled insights in all stages of treatment, such as diagnosis, treatment variability, care process, and patient outcomes. According to an analysis by Accenture, Artificial Intelligence in medicine can save 150 billion dollars for the US economy by 2026! 

                  Here’s how AI is transforming medicine and improving patient outcomes.

                  1. Electronic health records

                  A CDC survey revealed that nearly 75% of healthcare providers trusted their EHR to improve patient care. AI can make the existing EHR system more intelligent and flexible. AI can improve data discovery and personalize treatment recommendations. 

                  When used with virtual medical assistants, a practitioner can retrieve information from EHRs without becoming a victim of clinical burnout. Thus, AI in EHR can improve both clinical outcomes and clinicians’ quality of life. 

                  2. Medical imaging diagnostics

                  Medical imaging developers have discovered numerous ways to use Artificial Intelligence in medicine to detect and diagnose a wide range of diseases. These developments range from automating workflows to improving processing speed. 

                  While AI imaging may seem expensive, it saves a vast amount of capital spent on invasive disease treatment and prolonged hospital stays by detecting the disease at an early stage. Ai also improves the accuracy of screenings for conditions by helping doctors in early diagnosis. The advent of molecular imaging allows doctors to diagnose an ailment at the cellular level leading to accurate treatment, better patient outcomes, and decreased mortality and morbidity. 

                  3. Virtual health assistance

                  Virtual health assistance enhances outcomes by cutting short hospital stays, reducing readmission rates, and improving the patient experience, especially among chronically ill patients. Combining AI with healthcare wearables helps streamline telemedicine and improve patient outcomes. 

                  A Virtual Health Assistant is developed to manage chronic diseases. It collects information about a patient every time he/she visits a doctor. It can be programmed to perform health screenings and send the results to the doctor. Each healthcare facility may choose to have a tailored virtual health strategy. This will help integrate appropriate healthcare platforms and technologies into the delivery model. 

                  4. Proactive medical care

                  Conventional medical treatment involved treating the patient after detecting the disease. This was called ‘reactive medical care.’ Thankfully, AI brought in a significant shift turning reactive medical care into ‘proactive medical care.’ AI-enabled proactive medical care includes studying patients’ medical history to locate high-risk markets for various diseases. Then they are monitored for any changes. Once an alarming change is detected, the application suggests medical intervention.

                  These apps encourage the patient to be an active participant in their personal healthcare. These can be extremely helpful or even life-saving in conditions such as palliative care, congenital heart disease, and diabetes management. Such proactive medical care enables the patient to take care of oneself’s daily routine, including emergencies.

                  Read more: The Application and Impact of Information Technology in Healthcare 

                  Healthcare

                  Future of AI in medical industry

                  The journey of Artificial Intelligence in the medical industry has just begun. It has significantly changed patient experience, clinicians’ practice, and pharmaceuticals. AI has found its way from our smartwatches to the supply chain. The future of AI in medicine includes everything from answering the phone to therapeutic drug and device design, making clinical diagnoses and treatment plans, and even conversing with patients. Here are two examples:

                  1. Drug discovery

                  AI solutions for the medical industry can identify new potential therapies from vast information available on existing medicines. These will help healthcare providers in redesigning treatments that target new threats such as the Coronavirus. AI can improve the efficiency and success rate of drug development. It can also accelerate the process in response to deadly disease threats. 

                  A report by PwC states that the healthcare and pharma sectors are experiencing 67% improvement in clinical trials and drug discovery with the help of AI. 

                  Listed below are a few examples of how AI handholds frontline workers in the battle against Coronavirus pandemic:

                  • AI-enabled contactless and wireless thermal scanning devices designed to collect and store precise temperature data of individuals. Care providers can integrate this data into healthcare platforms for further analysis. 
                  • AI-based computer vision programs that can be integrated into drones and CCTV cameras installed in public places to monitor the adherence of the public to COVID safety protocols. It can send real-time alerts to police and public health departments in case of safety violations.
                  • AI-based robots that help physicians and healthcare workers with patient screening to avoid the risk of virus exposure. It can also enable video conversations with medical experts to procure prescriptions.
                  • Customized AI applications that help predict COVID-19 symptoms through sample screening. AI also helps in predicting COVID risk scores.  

                  2. Primary care

                  Multiple organizations are working on ‘direct to patient solutions’ offering advice through voice or chat-based interaction. This can enable patients to receive quick, scalable access for their medical issues minimizing unnecessary trips to the healthcare facility. Healthcare providers should use AI-based direct-to-patient solutions to provide essential guidance for patients in remote geographies of the world. 

                  Case Study
                  Find how Fingent’s healthcare technology solution helped improve collaboration between doctors, patients, and patient caregivers.  Download Now!

                  Artificial Intelligence is revolutionizing the medical industry

                  Artificial intelligence in medicine is changing the role of doctors and medical professionals. It is also helping patients improve personal health management. AI is here to grow and transform numerous aspects like diagnosis, decision-making, treatment plan, drug development, etc. AI can play a leading role in how the future medical industry operates, ensuring optimal patient outcomes. 

                  Fingent keeps a close eye on the happenings in the medical industry and has developed the necessary capabilities to enable a connected healthcare ecosystem for our clients by developing advanced, end-to-end digital solutions

                  Case Study
                  Fingent partnered with Casenet’s Advanced Solutions Group to develop TruCare Insights as a reliable population health management platform.  Download Now!

                  Give us a call, and let’s discuss your digital needs.

                  Stay up to date on what's new

                    About the Author

                    ...
                    Vinod Saratchandran

                    Vinod has conceptualized and delivered niche mobility products that cater to various domains including logistics, media & non-profits. He leads, mentors & coaches a team of Project Coordinators & Analysts at Fingent.

                    Talk To Our Experts

                      How AI is transforming businesses worldwide

                      Post the PC and the dot-com revolution, the world is witnessing another significant disruption- Artificial Intelligence.

                      Businesses that implement AI applications will have better access to data across multiple functionalities such as customer relationship management, enterprise resource management, fraud detection, finance, people operations, IT management, and other crucial segments. AI helps businesses find solutions to complex problems in a more human-like way and automate processes. Organizations can redirect their resources towards more creative aspects such as brainstorming, innovating, and researching.

                      The COVID-19 pandemic required solutions in days, not weeks or months, and business leaders needed to act quickly. AI-based techniques and advanced analytics are helping organizations augment decision making during crises like the coronavirus. While machine learning models were a great choice, developing machine learning models or advanced analytical models would take around four-eight weeks. So, the pandemic accelerated the demand for developing minimum viable AI models quickly.

                      Despite the many naysayers who believe robots will take over human jobs in the future, AI is already revealing itself as more of an enabler than a disruptor. Here are nine examples of artificial intelligence transforming business.

                      Read more: How Will Artificial Intelligence Transform The World By 2030 

                      AI

                      1. Sales and business development

                      As lockdowns and stay at home orders continue, people are now moving from personal interactions to digital interactions such as online shopping and mobile banking. This shift has created many new and unstructured data that is hard to interpret. That’s where AI comes into the picture and helps understand what consumers feel and need.

                      AI-powered sales performance solutions can identify which customers are most likely to buy a company’s product or service. This model will help people in sales prioritize their customers and improve their productivity and effectiveness.

                      2. Demand and Supply

                      Most companies are interested in matching demand and supply. For instance, a steel company may have information about various factors that may influence steel demand. Typically, these demand measures depend on external data to match up with what the company’s supply chains can generate.

                      AI solutions help analyze these external data and ensure that the company is not producing more than you need to satisfy the demand and not leaving any request unfulfilled.

                      COVID-19 crisis is unprecedented, and companies have to make sure that they use data that is representative. Historical data allows you to gain insights into upcoming demand patterns and predict possible outcomes. 

                      3. Back-office tasks

                      Companies can leverage AI-powered cognitive assistants to perform their back-office tasks such as ordering new credit cards, canceling orders, or issuing refunds. If these assistants cannot handle complex tasks, human assistants can perform those tasks. It will ensure that the team members spend their time solving challenging problems and focus on productive activities.

                      As long as there are structured tasks, Robotic Process Automation can take care of back-office service operations. RPA is particularly useful for automating the claims processes of banks or insurance companies. Enterprise platforms like SAP offer Intelligent RPA that combines automation and artificial intelligence to augment business process automation. 

                      4. Cash-flow forecasting

                      As revenue systems dry up, cash flow is likely to be a severe concern for smaller businesses. However, several AI solutions can analyze data (only if representative) for cash-flow forecasting. 

                      Read more: 6 Ways Artificial Intelligence Is Driving Decision Making 

                      artificial intelligence

                      5. Document and identity verification

                      AI can identify and verify documents easily. For example, think of a bank that needs to verify customer data for onboarding and compliance. Human agents manually verify documents such as driving licenses or payslips and other relevant records. It is a costly and inefficient process.

                      AI is used to identify the type of ID document captured, perform face-matching, determine if the ID’s security features are present, and even determine if the person is physically present.

                      6. Travel and transportation

                      The transportation industry forms an integral part of a country’s infrastructure. As many employees may have to self-isolate during the COVID-19 crisis, AI solutions can analyze the number of staff needed by a travel company to run its business in these unprecedented times. For example, a company can request AI to provide information on whether they have enough workers to staff a railroad. Here, AI can help identify demand and supply from the laborers’ standpoint. 

                      AI is already being used in the transportation industry to reduce traffic congestion, avoid accidents, improve passenger safety, lower carbon emissions, and reduce overall financial expenses. 

                      7. Healthcare

                      From robot-assisted surgeries to safeguarding personal records against cybercrime, Artificial Intelligence is transforming the healthcare industry like never before. The healthcare industry has suffered in terms of medical costs and inefficient processes. 

                      AI-enabled workflow assistants are helping doctors free up 17% of their schedule. Virtual assistants are reducing redundant hospital visits, thereby giving nurses almost 20% of their time back. Also, AI helps pharmaceutical companies research life-saving medicines in a shorter time frame and reduce costs. More importantly, AI is being used to help improve healthcare in underdeveloped nations.

                      Read more: 7 Major Impacts of Technology in Healthcare 

                      healthcare

                      Examples of AI in healthcare:

                      • PathAI creates AI-powered technology for pathologists to help them analyze tissue samples and diagnose them more accurately.
                      • Atomwise uses AI and deep learning to improve drug discovery and to speed up the work of chemists.
                      • Pager is using artificial intelligence to help patients with minor pains, aches, and illnesses.

                      8. Finance

                      The financial sector relies on real-time reporting, accuracy, and processing of high volumes of quantitative data, where AI can enhance the processes. The finance industry is rapidly implementing chatbots, automation, algorithmic trading, adaptive intelligence, and machine learning into financial operations. For instance, Robo-advisor, an automated portfolio manager, was one of the biggest financial trends of 2018.

                      A few examples of how artificial intelligence transforms the financial industry:

                      • Betterment uses AI to learn about an investor and create a personalized investor profile based on their financial plans.
                      • Numerai is an AI-powered hedge fund that uses crowdsourced machine learning from many data scientists worldwide.

                      Read more: Artificial Intelligence and Machine Learning: The Cyber Security Heroes Of FinTech 

                      9. Social Media

                      With over 3.6 billion active profiles and about $45 billion in annual revenue, social media is invariably in the battle to personalize and provide a better experience for users. 

                      AI can organize massive amounts of data, recognize images, predict shifts in culture, and introduce chatbots. The technology has the potential to make or break the future of the social media industry.

                      Similarly, machine learning enables social media to identify fake news, hate speeches, and other anti-social activities in real-time.

                      Final thoughts

                      With the advancement in technologies, AI is improving possibilities taking businesses to the next level. These examples of artificial intelligence prove that artificial intelligence can transform business models if deployed correctly. 

                      Case Study: Development of AI-enabled chatbots and teaching assistants – How Fingent helped a leading university to create an Automated Intelligence-driven ecosystem

                      Fingent helps you leverage AI to drive the smart reinvention of your business workflows, processes, and technology. If you are looking to develop an intelligent infrastructure for your business or improve the security process or enhance the customer experience, contact us today! 

                       

                       

                      Stay up to date on what's new

                        About the Author

                        ...
                        Tony Joseph

                        Tony believes in building technology around processes, rather than building processes around technology. He specializes in custom software development, especially in analyzing processes, refining it and then building technology around it.He works with clients on a daily basis to understand and analyze their operational structure, discover (and not invent) key improvement areas and come up with technology solutions to deliver an efficient process.

                        Talk To Our Experts

                          Manufacturing technologies set to hold the reins in 2021

                          From big data analytics to advanced robotics to computer vision in warehouses, manufacturing technologies bring unprecedented transformation. Many manufacturers are already leveraging sophisticated technologies for manufacturing such as the internet of things(IoT), 3D printing, Artificial Intelligence, etc., to improve operations’ speed, reduce human intervention, and minimize errors.

                          As 2021 rapidly approaches, manufacturers will have to move away from Industry 4.0 and embrace Industry 5.0. The latter is all about connecting humans and machines (smart systems). Interestingly, Industry 5.0 may already be here. The ongoing COVID-19 pandemic only accelerates its arrival.

                          Read more: Digital Transformation in Manufacturing

                          Digital Transformation in Manufacturing

                          Here are the top 10 technologies that positively impact the manufacturing industry.

                          1. Robotics

                          With advances in robotics technology, robots are more likely to become cheaper, smarter, and more efficient. Robots can be used for numerous manufacturing roles and can help automate repetitive tasks, enhance accuracy, reduce errors, and help manufacturers focus on more productive areas.

                          Benefits of Using Robotics in Manufacturing:

                          • They improve efficiency right from handling raw material to finished product packing
                          • You can program robots to work 24/7, which is excellent for continuous production
                          • Robots and their equipment are highly flexible and can be customized to perform complex jobs
                          • They are highly cost-effective even for small manufacturing units

                          Collaborative assembly, painting, and sealing, inspection, welding, drilling, and fastening are a few examples of the jobs done by robots. Today, robots work in several industries, including rubber and plastic processing, semiconductor manufacturing, and research. While they are mainly used in high-volume production, robots make their presence felt in small to medium-sized organizations.

                          Read more: What Are Cobots and How Can They Benefit Industries? 

                          2. Nanotechnology

                          Nanotechnology has grown to a great extent in the last few years. It involves the manipulation of nanoscopic materials and technology. Though its widespread use is relatively new, it will be indispensable to every manufacturing industry soon. Further research and experimental designs suggest that nanotechnology can be highly effective in the manufacturing industry.

                          Applications of Nanotechnology in Manufacturing: 

                          • Create stable and effective lubricants that are useful in many industrial applications
                          • Car manufacturing
                          • Tire manufacturers are using polymer nanocomposites in high-end tires to improve their durability and make them wear resistance
                          • Nanomachines, though not used widely in manufacturing now, are, for the most part, future-tech

                          3. 3D Printing

                          Post its tremendous success in the product design field, 3D printing is set to take the manufacturing world by storm. The 3D printing industry was worth USD 13.7 billion in 2019 and is projected to reach USD 63.46 billion by 2025. Also known as additive manufacturing, 3D Printing is a production technology that is innovative, faster, and agile.

                          Benefits of Using 3D Printing in Manufacturing:

                          • Reduces design to production times significantly
                          • Offers greater flexibility in production
                          • Reduces manufacturing lead times drastically
                          • Simplifies production of individual and small-lot products from machine parts to prototypes
                          • Minimizes waste
                          • Highly cost-effective

                          Major car manufacturers use 3D printing to produce gear sticks and safety gloves.

                          Read more: 3D Printing: Fueling the Next Industrial Revolution 

                          4. The Internet of Things (IoT)

                          IoT in manufacturing employs a network of sensors to collect essential production data and turn it into valuable insights that throw light into manufacturing operational efficiency using cloud software. This connectivity had brought machines and humans closer together than ever before and led to better communication, faster response times, and greater efficiency.

                          Benefits of Using IoT in Manufacturing

                          • Internet of Things (IoT) reduces operational costs and creates new sources of revenue
                          • Faster and more efficient manufacturing and supply chain operations ensure a shorter time-to-market. For instance, Harley- Davidson leveraged IoT in its manufacturing facility and managed to reduce the time taken to produce a motorbike from 21 hours to six hours.
                          • IoT facilitates mass customization by providing real-time data essential for forecasting, shop floor scheduling, and routing.
                          • When paired with wearable devices, IoT allows monitoring workers’ health and risky activities and making workplaces safer.

                          The ongoing pandemic has expanded the focus on IoT due to its predictive maintenance and remote monitoring capabilities. Social distancing makes it difficult for field service technicians to show up on short notices. IoT-enabled devices allow manufacturers to monitor equipment’s performance from a distance and identify any potential risks even before a malfunction occurs. Additionally, IoT has enabled technicians to understand a problem at hand and come up with solutions even before arriving at the job site so that they can get in and get out faster.   

                          Read more: Upcoming IoT trends that can shape the business landscape

                          5. Cloud Computing

                          After making its presence felt in other industries, cloud computing is now causing ripples in manufacturing. From how a plant operates, integrating to supply chains, designing and making products to how your customers use the products, cloud computing is transforming virtually every facet of manufacturing. It is helping manufacturers reduce costs, innovate, and increase competitiveness.

                          IoT helps improve connectivity within a single plant, while cloud computing improves connectivity across various plants. It allows organizations across the globe to share data within seconds and reduce both costs and production times. The shared data also helps improve the product quality and reliability between plants.

                          Read more: Why It’s Time to Embrace Cloud and Mobility Trends To Recession-Proof Your Business? 

                          6. Big Data

                          The manufacturing industry is complicated in terms of the variety and depth of the product. As far as opening new factories in new locations and transferring production to other countries is concerned, companies can leverage big data to tackle it. 

                          As the process of capturing and storing data is changing, new standards in sharing, updating, transferring, searching, querying, visualizing, and information privacy are arising. Think of manufacturing software like MES, ERP, CMMS, manufacturing analytics, etc. When integrated with big data, these can help find patterns and solve any problems. 

                          Benefits of Using Big Data:

                          • Improve manufacturing
                          • Ensure better quality assurance
                          • Customize product design
                          • Manage supply chain
                          • Identify any potential risk

                          Explore our use case: Adding New Dimensions to Equipment Maintenance with IIoT, AR, and Big Data

                          7. Augmented Reality

                          In manufacturing, we can use AR to identify unsafe working conditions, measure various changes, and even envision a finished product. Augmented Reality can help a worker view a piece of equipment and see its running temperature, revealing that it is hot and unsafe to touch with bare hands. An employee can know what’s happening around them, like what machinery is breaking down, a co-worker’s location, or even a factory’s restricted sites. Simply put, AR applications can help inexperienced employees to be informed, trained, and protected at all times without wasting significant resources.

                          AR has made it possible for technicians to provide remote assistance by sending customers AR and VR enabled devices and helping them with basic troubleshooting and repairs during the COVID-19 crisis. Also, more and more customers are open to allowing manufacturers to implement AR with the long-term goal of creating permanent solutions. After all, it helps both the customers and field technicians by reducing the risk of exposure. 

                          Read more: How Augmented Reality Can Simplify Equipment Maintenance 

                          8. 5G 

                          5G will have a tremendous impact on the manufacturing industry. It will be more transformational for devices that drive automated industrial processes.

                          The amazing low-latency and connectivity of 5G will power sensors on industrial machines. It will help generate a lot of data that will open new avenues of cost savings and efficiency when combined with machine learning. Currently, China and South Korea are leveraging 5G this way. Soon the US and the UK are expected to compete with them.

                          Read more: From Remote Work to Virtual Work, 5G is Reinventing the Way We Work 

                          9. Artificial Intelligence(AI)

                          Manufacturers are already employing automation on the plant floor and in the front office. In the future, AI-powered demand planning and forecasting will continue to develop that will help manufacturers align their supply chain with demand projections to get data that were not possible previously.

                          A study from IFS shows that 40% of manufacturers plan to implement AI for inventory planning and logistics and 36% for production scheduling and customer relationship management. 60% of the respondents are said to focus on productivity improvements with these investments.

                          Read more: The Future of Artificial Intelligence – A Game Changer for Industries

                          10. Cybersecurity

                          Moving manufacturing operations to the cloud and building and integrating systems using IoT will equally create opportunities and challenges. In an increasingly insecure digital era, there is a pressing need for heightened security. 

                          Manufacturing experts are investing in secure cloud-based ERP like SAP and Odoo to resolve the security challenges. Enterprises-big or small- will soon increase their dependence on cloud-based ERP systems to address security glitches and save costs by paying for usage. 

                          Read more: Top 6 Reasons Why You Should Move to a Cloud-Hosted ERP 

                          White Paper: What difference does RPA bring to your business? How can you embrace this disruptive technology to remain competitive? Download to learn more! 

                          Conclusion

                          Technologies for manufacturing will decrease labor costs, improve efficiency, and reduce waste, making future factories cheaper and more environment-friendly. Additionally, improved quality control will ensure superior products that will benefit both the consumers and the manufacturers.

                          COVID-19 has changed the way the manufacturing industry operates. If your business wants to remain competitive, you will have to embrace manufacturing technologies to shape your company’s future. To know more about the forward-thinking strategies that integrate the latest trends and technologies, please connect with us today.

                           

                          Stay up to date on what's new

                            About the Author

                            ...
                            Vinod Saratchandran

                            Vinod has conceptualized and delivered niche mobility products that cater to various domains including logistics, media & non-profits. He leads, mentors & coaches a team of Project Coordinators & Analysts at Fingent.

                            Talk To Our Experts

                              What is healthcare information technology and what are its benefits?

                              From transportation to manufacturing to education, information technology is influencing virtually every industry today. The healthcare industry has experienced a significant transformation brought in by information technology. From electronically checking in patients and updating their medical records to digitally forwarding blood test results to patients, information technology is transforming the healthcare industry by leaps and bounds. Experts estimate that by the end of 2024, the healthcare information technology market could reach USD 390.7 bn.

                              This post looks at how information technology and healthcare go hand-in-hand to benefit both medical professionals as well as patients.

                              Read more: 7 Major Impacts of Technology in Healthcare 

                              What is Healthcare Information Technology (HIT)?

                              While information technology refers to the usage of computers and telecommunications and other systems to store, retrieve and share information, HIT, refers to the secure use of technology to manage health-related information.

                              The most common examples of healthcare information technology are e-prescriptions, electronic health records (EHRs), and other tech tools that help patients meet health goals such as managing blood sugar levels or quitting smoking. Information technology has paved the way for more accurate EHRs/ EMRs that help patients gain quick and easy access to various healthcare facilities. Additionally, it has given patients more control over their health through various mobile apps and information platforms.

                              Healthcare information technology’s primary purpose is to maintain privacy while improving patient care. HIT enables medical professionals to not only take better care of patients but also improve their communication with patients.

                              A few examples of Health IT are: 

                              • Computerized disease registries
                              • Consumer health IT applications
                              • Electronic prescribing
                              • Electronic medical record systems such as EMRs, EHRs, and PHRs
                              • Telehealth 

                              What is the significance of healthcare information technology?

                              The goal of using information technology in healthcare is to enhance the overall health of the people by improving the quality of care provided to the patients. 

                              Healthcare information technology is significant because it: 

                              • Helps in delivering more accurate, actionable, and accessible information related to a patient’s health that can be customized to meet the individual’s needs.
                              • Allows better and faster decisions related to health risks that affect an individual as well as the public.
                              • Supports communication between patients and healthcare professionals and helps in decision-making.
                              • Helps build networks of social support for both patients as well as healthcare professionals.
                              • Improves awareness among patients as well as the general public about health-related matters that can lead to positive outcomes.

                              Uses of information technology in healthcare

                              Information technology is being used in numerous ways to improve patient safety, healthcare delivery, and communication between healthcare providers and patients. One of the most remarkable applications of HIT is patient records and data management.

                              Previously, paper charts were used to maintain patients’ records that were easily lost, misinterpreted, or damaged. IT has helped healthcare professionals track patient’s records easily and securely. A medical professional can add pharmacy records, X-rays, test results, and even vital signs to the virtual chart that is easy to read, share, and check against other records.

                              Also, an entirely new discipline known as nursing informatics has been formed by combining IT and clinical care. This discipline combines the practice of nursing with IT management and helping people with a passion for science and data in the service of medical patients and improving healthcare. With increased demand in technology, this field is gaining more popularity day by day.

                              According to a survey by the Robert Wood Johnson Foundation, it was found that nurses who use IT are more likely to spot medical errors. As less time is spent on documenting patient care, nurses can get more time to spend on patient care. Also, as more and more people are getting insured and seeking quality care, the demand for information technology that can help track patients’ records accurately and improve healthcare is only going to grow.

                              As the HIT field expands, it will create more jobs for IT professionals in hospital settings. From medical transcriptionists, medical coding specialists, clinical IT consultants, and healthcare system analysts, roles in the field of healthcare are growing every year. Apart from creating jobs, IT will stay relevant for hospital administrators and policymakers to increase their volume, speed, and quality of service in the care centers. 

                              Read more: How digital tools are reshaping healthcare 

                              4 future trends in healthcare to watch out for!

                              1. Telehealth will gain more popularity

                              As more and more doctors, specialists, and health systems are providing telehealth services, it will gain more prominence in near future. For example, a senior citizen recovering from post-acute care could avail of on-camera consultation without the need for traveling. Regardless of the user’s condition or age or familiarity with the concept, telehealth will gain wider adoption soon.

                              2. Virtual Reality (VR) will be widely used in patient care

                              • Virtual Reality can help memory care patients visit vacation spots, access street views of their childhood homes and parks virtually.
                              • VR is already helping surgeons visualize potential issues before complex surgeries. With more advancements in VR coming up, it could improve procedural intervention by overlaying imaging data and relevant information.
                              • Vivid imagery using VR is being used in hospitals to distract patients undergoing treatments or those experiencing discomfort.
                              • VR can be used to educate or explain treatment to a patient.
                              • VR can help people gain a new perspective on illness. For instance, VR headsets with special software can help people understand what it’s like for people with Alzheimer’s and build empathy.

                              Read more: Is Mixed Reality the Future of the Healthcare Industry? 

                              3. Artificial Intelligence will improve diagnosis and other processes

                              AI tools such as chatbots and wearables are helping patients take better control of their own care. Artificial Intelligence is being used to maximize hospital efficiency, develop personalized drugs, create treatment protocols, to perform patient monitoring, and care administration. Using complex machine learning algorithms, AI helps emulate human intelligence in analyzing and comprehending complex medical data. 

                              Leading healthcare institutions such as the Mayo Clinic and the UK’s NHS have developed their own AI algorithms to analyze vast amounts of healthcare information that can lead to far-reaching changes in the fields of disease prevention and early diagnosis.  

                              4. 5G will boost network speeds

                              5G has the potential to significantly improve healthcare delivery by boosting network speed and capacity while reducing latency. This will be crucial for transmitting large medical images, supporting telehealth initiatives and remote patient monitoring tools, and facilitating the complex uses of AI, AR, and VR technologies. 5G technology will also facilitate faster downloads and communication on tablets and other mobile devices used in healthcare that allows the growth and adoption of mobility in healthcare. 

                              Read more: From Remote Work to Virtual Work, 5G is Reinventing the Way We Work 

                              How Fingent can help you

                              At Fingent, we offer healthcare information technology consulting that will help identify your organization’s specific needs and provide apt solutions for improving patient care delivery and enhancing the productivity of healthcare professionals. We also develop technology solutions for healthcare payer organizations and insurance carriers that help them make better decisions and improve their visibility in the competitive market.

                              We aim to deliver value through our healthcare application platforms and customize solutions according to your business objective. Contact us to know more about how your business can benefit from our healthcare IT consulting services.

                               

                              Stay up to date on what's new

                                About the Author

                                ...
                                Sreejith

                                I have been programming since 2000, and professionally since 2007. I currently lead the Open Source team at Fingent as we work on different technology stacks, ranging from the "boring"(read tried and trusted) to the bleeding edge. I like building, tinkering with and breaking things, not necessarily in that order.

                                Talk To Our Experts

                                  How is AI Transforming Various Industry Sectors?

                                  From Siri to self-driving cars, Artificial Intelligence has been breaking into new realms, including industries that are late to adopt technology or that heavily rely on manual labor. Gartner predicts that by 2020, AI will produce more jobs than it displaces. By 2022, one in five workers engaged in mostly non-routine tasks will rely on AI to do a job.

                                  The future of AI only looks bright! 

                                  According to experts, AI and the future of work will amplify human efficiency and productivity. AI may match or even surpass human intelligence and capabilities on tasks related to pattern recognition, complex decision making, sophisticated analytics, language translation, reasoning and learning, and speech recognition. 

                                  This article discusses how five major industries are benefiting from AI and its innovations.

                                  1. Healthcare

                                  No surprises here. AI in healthcare always comes first on the list. From doctors, surgeons, nurses to desk receptionists at clinics, Artificial Intelligence is enabling process automation across the healthcare community and ecosystem.

                                  AI tools enable medical professionals to diagnose symptoms, identify trends, analyze data or information that would predispose a person to a particular disease.

                                  AI-powered bots assist surgeons with heart, thoracic, and colorectal surgeries. Using bots for surgeries helps lower the risk of infection and blood loss, reduce pain, ensure higher accuracy, shorten hospital stays, and expedite recovery. Digitized health records (EHRs) help patients access their information on a shared online health portal.

                                  Along with other technologies, Artificial Intelligence is being widely used in the ongoing fight against the COVID-19 pandemic. Remote patient monitoring using AI-powered medical equipment or devices help doctors maintain a safe distance from the patients, while offering treatment. The massive amounts of data generated every second in the field of medicine can be utilized effectively to continuously train AI systems through which these systems acquire the capabilities to generate insights that can aid medical researchers.   

                                  Read more: How Emerging Technology is Transforming the Healthcare Industry? 

                                  The future of AI in healthcare could include everything from answering the phone to interpreting radiology images, and designing therapeutic drugs.

                                  2. Manufacturing

                                  AI plays a key role in helping achieve better productivity, efficiency, and visibility across manufacturing operations. AI systems can transform the way organizations run their production lines, enhance human capabilities, garner real-time insights, and facilitate the design and product innovation.

                                  Read more: Digital Transformation in Manufacturing 

                                  Following are some of the ways by which AI impacts the manufacturing sector:

                                  • AI systems help monitor every stage of the production cycle and machine learning algorithms can be used to predict the fill rate, thereby optimizing the manufacturing processes and production planning.
                                  • Small, lightweight “cobots” help create safer working environments. Manufacturers can adopt robotics to perform dangerous jobs, thus sparing their employees for crucial tasks, thereby avoiding occupational health hazards. Cobots are considerably less expensive and easy to program than the usual industrial robots. Soon, machine learning algorithms can improve their capabilities and help the cobots take instructions from humans and interact with them in a better way.

                                  Read more: What Are Cobots and How Can They Benefit Industries? 

                                  • Predictive maintenance helps companies understand when machines need to be attended and serviced. Using machine learning, predictive maintenance can generate valuable data that helps prevent unplanned downtime. Sensors and advanced analytics in manufacturing equipment allow manufacturers to respond to alerts and resolve machine issues on time.
                                  • Engineers or designers can input design goals and other parameters into generative design software (a program that generates several outputs to meet specific criteria) to explore better designs. Using machine learning, designers can learn from each iteration and understand what works and what does not.

                                  3. Finance

                                  According to a report by Business Insider Intelligence, about 75% of bank respondents with assets worth over $100 billion said that they are using AI technologies compared to the 46% of banks with assets less than $100 billion. 

                                  As much as $199 bn is saved for the front office and $217 bn for the middle office. AI technologies in banking can help generate over $250 billion in value. Considering the significant savings opportunities, more and more companies are implementing AI. Simply put, AI helps financial services companies mitigate risk, reduce overheads, and generate more revenue.

                                  4. Education

                                  Thanks to the numerous AI applications, the academic world is becoming more personalized. Today, a student can access study materials easily through computers and smart devices. AI helps automate administrative chores and minimizes the time required to complete complex tasks thereby allowing teachers to spend more time with each student. 

                                  Teachers can assess both multiple choice tests as well as written responses easily. Robots are helping create smart content such as video lectures and simulations as well as digitized textbooks that can be customized to the learning requirements. Along with the learning aids, these digitized interfaces help students of all academic ages and grades. 

                                  There is also a rising interest towards smart campus initiatives. A smart campus is a physical or digital set-up in which humans and technology- based systems come together to create and deliver automated experiences across higher education institutions.

                                  AI is eliminating the boundaries of learning regardless of the physical locations. Today, students can learn any course from anywhere across the globe, at any time. AI-powered education helps nurture the fundamental IT skills of students and soon, there will be a wide range of highly interactive and personalized courses available online.

                                  5. Retail

                                  The retail and e-commerce industry has huge volumes of customer information, sales forecasting, stock and inventory to be tracked. Artificial Intelligence helps simplify data management to a large extent. For example, while searching for a product on an e-commerce application, AI recommends similar items according to your budget, color preference, purchase history, browsing data, online behavior, etc. 

                                  Cart abandonment is a common issue in the e-commerce industry which occurs when a customer adds items to their shopping cart but does not purchase them. With the help of chatbots and predictive analysts, the likelihood of cart abandonment can be reduced. Chatbots can remind your customer of the items left in their cart before they choose to navigate away.

                                  Previously, people had to rely on the FAQ section of the website to get their questions answered. However, this included unchangeable questions and static answers and most customers were not satisfied with the answers. Today, however, it is changing. A chatbot agent can respond to questions using Natural Language Processing or NLP in a much better way and ensure that potential customers don’t abandon your website. Integrating voice search features into e-commerce applications helps offer a seamless digital customer experience. 

                                  Read more: How Will Artificial Intelligence Transform The World By 2030 

                                  Final Thoughts

                                  Artificial Intelligence and machine learning together are promising to help transform every industry by guiding, organizing, and automating work. AI is definitely here to stay! At Fingent, we have the expertise to help businesses of all sizes including startups as well as established enterprises to gain an edge over competitors. 

                                  From suggesting products or providing basic customer service or running software tests, developing apps, and completing extensive problem-solving procedures for industries, we use AI technologies such as machine learning, natural language processing, and business rules that will provide you with optimal results. Get in touch with us to learn more. 

                                  Stay up to date on what's new

                                    About the Author

                                    ...
                                    Sreejith

                                    I have been programming since 2000, and professionally since 2007. I currently lead the Open Source team at Fingent as we work on different technology stacks, ranging from the "boring"(read tried and trusted) to the bleeding edge. I like building, tinkering with and breaking things, not necessarily in that order.

                                    Talk To Our Experts

                                      The Growing Application of AI in Insurance Leads to a Radical Transformation

                                       

                                      Introduction

                                      Digital transformation is not a business decision, it is a survival strategy. The Insurance industry is slowly recognizing that this vital truth is applicable to them as well. As insurers face several strategic and operational challenges due to the COVID-19 pandemic, they are recognizing that technology is the only answer and solution. Armed with this knowledge, the insurance industry is undergoing a swift and tremendous transformation, driven by the burning need to improve customer experience. 

                                      Artificial Intelligence lies at the heart of these changes and is fundamental to success. AI tries to solve the age-old problems by integrating them with existing infrastructure or by replacing legacy systems. This article answers some of the pertinent questions that will assist industry leaders in making an informed decision.

                                      Why does the insurance industry require AI now?

                                      Unlike many other challenges that are usually contained to one geographic location, COVID-19 is impacting essentially every corner of the world. It gave the entire planet a crash course in connected living and has made massive changes. Small insurance companies are now struggling to survive the onslaught of new requests and most larger firms may need to downsize to make it through these stressful economic times. In this climate of uncertainty, AI will be one of the key factors that will help winners survive. Until recent times, the insurance industry has only used AI in minimal ways. But there are several processes that could be improved drastically using AI.

                                      1. Marketing and sales: 

                                      AI technologies can be used to price insurance policies more relevantly and competitively. It can be used to recommend the most beneficial products to their customers. Insurers can customize the price of their products based on individual needs and lifestyles so that their customers are happy to pay only for the coverage they need. This heightens the appeal of insurance to a wider audience while attracting some newer customers. 

                                      2. Risk management: 

                                      Neural networks of AI can be used to red flag fraud patterns and minimize fraudulent claims. AI can also be used to improve actuarial models and risks that could lead to working out more profitable products. 

                                      3. Operations: 

                                      Chatbots can be developed to understand and answer the bulk of customer queries over chat, phone calls, and email. This is especially helpful during situations like the pandemic where customers and insurers are unable to meet with each other. This can free up significant resources and time for the insurers that can be used in more profitable activities. 

                                      Read our white paper: How can your business use AI to achieve higher profits now?

                                      What are the benefits of AI in the insurance industry?

                                      1. Efficient process: 

                                      Currently, we are witnessing the first wave of tangible opportunities. The automation provided by AI is offering insurers reduced costing along with more efficient processes. The work dividends form the first wave of benefits. Monotonous, low-level, hazardous, and long-drawn-out tasks are taken over by machines freeing humans to do the high-level and more productive tasks. It also ensures efficiency without the margin of human error.

                                      2. Accurately measured and priced data: 

                                      The role of underwriters is changing as AI is set to re-engineer and amplify insurance underwriting. Powered by the disruptive growth of data, AI has the potential to help underwriters analyze vast amounts of information, locate red flags, and help them make more accurate decisions. While we are not expecting to eliminate human underwriters, working alongside AI systems will ensure that all risks are accurately measured and priced. 

                                      Read more: 6 Ways Artificial Intelligence Is Driving Decision Making

                                      3. Claims processing made easy: 

                                      Claims processing has long been a pain-point for the insurance industry. Managing claims requires a significant manual effort right from document processing to flagging potential fraud. Restricted movement during the COID-19 pandemic makes this task especially difficult. AI can be used to automate document processing. It can scan complex forms quickly and accurately. The insurance company can cut its claims processing time from weeks to just a matter of minutes. AI can help ensure that rejection of any claim is based on solid reasons. This way, insurance companies can drive cost efficiencies by reducing the number of denials that prevent claimants from going for appeals which insurance companies may ultimately have to settle. 

                                      Top 3 primary use cases for AI in the insurance industry

                                      The advent of AI represents a quantum leap in how insurance is bought and sold, and how customers are served. Also, it is creating opportunities for insurance companies to affix their leadership positions within the industry. 

                                      Here are five primary use cases. If beginners can use this approach to disrupt the old guard, established firms can stave off new competitors and differentiate themselves from conventional foes. 

                                      Use Case 1: Always-on customer service

                                      Insurance companies are expected to meet the customer’s expectations themselves. Gone are the days when we companies used to delegate customer service to brokers or agents. Customers expect to reach their insurance providers through any channel-like website, email, mobile app, voice call, chat, social media, etc. It’s become mandatory for insurance providers to possess multi-channel capabilities to handle queries and attend service requests. This is where AI comes to the rescue enabling insurance firms to be on the job 24/7. Always-on, multi-channel service available through chatbots, and customized interactive tools will be your secret sauce to exemplary customer service. 

                                      Read more: How AI is Redefining the Future of Customer Service

                                      Use Case 2: Automate processes that are difficult to automate

                                      Insurance companies employ a large workforce to manually perform operational processes. Variations in products, state-specific rules, and lack of adoptions of standards across the value chain previously made it harder to automate the process. With AI, it is now possible to predict and continuously improve the process by leveraging ML thus automating the processes effectively. By combining RPA tools with cognitive technologies, insurance companies can automate processes such as customer service requests, endorsements, and claims-processing, and provide a faster turn-around time. 

                                      Use Case 3: Continually improve the value from data

                                      Predictive models help insurance companies determine business-critical aspects such as the maximum possible loss, probability, and pricing. However, as the companies innovate products, reach out to newer customer segments, and address new risks, these predictive models quickly get outdated making it difficult to keep up with changes. AI makes it possible to provide a feedback loop for machines to learn and adapt to ever-changing insurance business needs. 

                                      Read more: How Blockchain Enables the Insurance Industry to Tackle Data Challenges

                                      Must-have AI technologies for the insurance industry

                                      AI has become the cornerstone of digital transformation for the insurance industry. Leveraging AI technologies can help insurance companies address various issues that they may encounter. These are some must-have AI technologies in the insurance industry:

                                      1. Image analytics 

                                      Insurance companies must carry out inspections to validate their decisions based on actual facts. This helps them spot any existing or potential risks and support their customers in risk management. This can be very time-consuming. The use of AI focuses on the reduction of inspection time and increases the surveyor’s productivity. It can be applied in property and casualty insurance to analyze the images of cars at the accident scene, determine the parameters, and assess replacement costs. 

                                      Advanced image analytics enables quick analysis of photos to determine parameters crucial from the perspective of life insurance. These parameters enable insurers to decide whether medical underwriting is required or not and provide an instant quote and formulate policies.

                                      2. Internet of Things

                                      IoT allows insurance companies to cross-sell to existing customers. They could offer discounted insurance to existing customers. There are several IoT backed devices that can detect and alert a customer when there is an issue within their home or commercial property. Integrating IoT with AI, insurance companies can offer a far superior service and enhance the customer experience. 

                                      3. Machine Learning in underwriting

                                      The automated process eliminates the tedious and error-prone job of dealing with unstructured documents and extracts information from them to make business decisions. AI, ML, and Deep Learning can help in extracting such information, aligning it to common vocabulary, and making that information accessible through virtual assistants or search engines. This way underwriting now becomes an automated process that lasts just a few seconds. 

                                      4. End to end automation

                                      AI helps insurers automate complex processes, end to end. Using RPA, you can tackle simpler and repeatable tasks. For example, the claims assessment process can be automated to enable the assessor to receive evidence through more advanced AI-based techniques.

                                      Insurance companies receive data from brokers in a variety of formats and require many people to convert the data to a standard format. AI can map this data accurately allowing insurers to reduce inefficiencies in their processes. It can also improve data quality by detecting gaps and addressing those gaps in the incoming data. 

                                      Read more: Scalable Benefits of RPA in Banking, Insurance, and Logistics

                                      5. Machine Learning for price sophistication 

                                      Price optimization techniques with the help of ML and GLMs help insurance companies to understand their customers, allows them to balance capacity with demand, and drive better conversion rates.  

                                      6. Connected claims processing

                                      Advanced algorithms can help insurance claims to be automated which allows insurers to attain high levels of accuracy and efficiency. Data-capture technologies can replace manual methods. Evaluation of the validity of a claim is also made much simpler.

                                      Read more: 5 Steps to Gain Business Value with AI Adoption 

                                      Are you ready to ride on the wave of AI?

                                      Rapid advances in AI will lead to disruptive changes in the insurance industry. The winners in AI-based insurance will be those who harness the power of new technologies. Most importantly those companies who do not view disruptive technologies as a threat to their current business will thrive in the insurance industry.  Get started on making sure you are one of them! Contact us to adopt the power of AI into your insurance business.  

                                       

                                       

                                      Stay up to date on what's new

                                        About the Author

                                        ...
                                        Vinod Saratchandran

                                        Vinod has conceptualized and delivered niche mobility products that cater to various domains including logistics, media & non-profits. He leads, mentors & coaches a team of Project Coordinators & Analysts at Fingent.

                                        Talk To Our Experts

                                          ×